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1. Theory

The shear viscosity η can be calculated using equilibrium fluctuations of the
off-diagonal components (σαβ) of the stress tensor. For an isotropic system, the
convergence of viscosity calculations can be improved by including equilibrium
fluctuations of diagonal components of the stress tensor. In this case the gener-
alized Green-Kubo formula is applied to the symmetrized traceless portion (Pαβ)
of the stress tensor with appropriate weight factors for diagonal and off-diagonal
elements:

(1) η =
V

10kBT

∑
α

∑
β

qαβ

∫ ∞

0

〈Pαβ(t)Pαβ(0)〉dt,

where we sum over α, β = x, y, z, V and T are volume and temperature of the
system, kB is the Boltzmann constant, qαβ is a weight factor (qαβ = 1 if α 6= β,
qαβ = 4

3
if α = β), and Pαβ(t) is defined as

(2) Pαβ(t) =
σαβ(t) + σβα(t)

2
− δαβ

3

∑
γ

σγγ(t),

where δαβ is the Kronecker delta and

(3) σαβ(t) =
1

V

[
N∑
i

miviα(t)viβ(t) +
N∑
i>j

Fijα(t)rijβ(t)

]
being N total number of particles, viα α-component of the velocity of atom i, Fijα
α-component of the force exerted on atom i by atom j, and rijβ β-component of
the vector ~rij separating atmos i and j .
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Because Pαβ = Pβα, Eq. 1 can be written as

(4) η =
V

10kBT

(
4

3

∑
α

∫ ∞

0

〈Pαα(t)Pαα(0)〉dt+ 2
∑
α

∑
β>α

∫ ∞

0

〈Pαβ(t)Pαβ(0)〉dt

)
.

According Einstein relations, integrals which appear in Eq. 4 can be described
as

(5)

∫ ∞

0

〈Pαβ(t)Pαβ(0)〉dt = lim
t→∞

〈[Aαβ(t)− Aαβ(0)]2〉
2t

,

where
dAαβ(t)

dt
= Pαβ(t). Using above equation, Eq. 4 can be written as

(6) η = lim
t→∞

η(t),

where

(7) η(t) =
V

10kBTt

(
2

3

∑
α

〈[Aαα(t)− Aαα(0)]2〉+
∑
α

∑
β>α

〈[Aαβ(t)− Aαβ(0)]2〉

)
.

Haile has shown that in a system with periodic boundary conditions the viscos-
ity cannot be calculated using the conventional Einstein formula, which involves

atomic coordinates and velocities. Because
dAαβ(t)

dt
= Pαβ(t), one can write follow-

ing equation

(8) ∆Aαβ(t) = Aαβ(t)− Aαβ(0) =

∫ t

0

Pαβ(t′)dt′.

Using above equation, Eq. 7 can be written as

(9) η(t) =
V

10kBTt

(
2

3

∑
α

〈[∆Aαα(t)]2〉+
∑
α

∑
β>α

〈[∆Aαβ(t)]2〉

)
.

2. Implementation

In realizing Eq. 9 from simulation, the brackets would be interpreted as averages
over time origins
(10)

η(t) =
V

10kBTt

(
2

3

∑
α

lim
τ→∞

1

τ

∫ τ

0

[∆Aαα(t; t0)]
2 dt0 +

∑
α

∑
β>α

lim
τ→∞

1

τ

∫ τ

0

[∆Aαβ(t; t0)]
2 dt0

)
,

where

(11) ∆Aαβ(t; t0) = Aαβ(t+ t0)− Aαβ(t0) =

∫ t0+t

t0

Pαβ(t′)dt′.

In simulations, one uses discrete time steps, so that one has a set of discrete
times {t1, t2, . . . , tNtot}, where ti = t0 + (i − 1)∆t for i = 1, 2, . . . , Ntot and ∆t is
the time step. Total time simulation is given by tsimul = tNtot − t1. Time origins
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belong to set of discrete times {t1, t2, . . . , tNor}, where Nor = Ntot
2

. Elapsed time is
set equal to t = n∆t, where n = 1, 2, . . . , Nor. Thus, η(t) (Eq. 10) can be obtained
from

(12) η(t) =
V

10kBTn∆tNor

Nor∑
i=1

(
2

3

∑
α

[∆Aαα(t; ti)]
2 +

∑
α

∑
β>α

[∆Aαβ(t; ti)]
2

)
.

Because the integrand values are known at equally spaced steps and lower and
upper limits are also known, trapezoidal and simpson’s quadrature can, in prin-
ciple, be useful for numerical integration of ∆Aαβ(t; ti). Thereby, one can use an
extended trapezoidal rule such that

∆Aαβ(t; ti) = ∆t

[
1

2
Pαβ(ti) + Pαβ(ti + ∆t) + Pαβ(ti + 2∆t) + . . .(13)

+ Pαβ(ti + (n− 1)∆t) +
1

2
Pαβ(ti + n∆t)

]
,

as well as an extended Simpson’s rule such that

∆Aαβ(t; ti) = ∆t

[
1

3
Pαβ(ti) +

4

3
Pαβ(ti + ∆t) +

2

3
Pαβ(ti + 2∆t) +

4

3
Pαβ(ti + 3∆t) + . . .(14)

+
2

3
Pαβ(ti + (n− 2)∆t) +

4

3
Pαβ(ti + (n− 1)∆t) +

1

3
Pαβ(ti + n∆t)

]
.

Both equations can be written in a simple way through

(15) ∆Aαβ(t; ti) = ∆tJαβ(t; ti),

where Jαβ(t; ti) is obtained directly from above equations. Using Eq. 15, Eq. 12
can be written as

(16) η(t) =
V∆t

10kBTnNor

Nor∑
i=1

{
2

3

∑
α

[Jαα(t; ti)]
2 +

∑
α

∑
β>α

[Jαβ(t; ti)]
2

}
.

3. Borodin’s implementation

In previous section, we have described the correct expressions for calculat-
ing shear viscosity. However, an important modification has been included in
Borodin’s implementation for shear viscosity which is not theoretically justified.
In what follows, we shall describe this modification. In turn, next section will
describe numerical differences between Borodin’s implementation and right imple-
mentation.

In Borodin’s implementation, one replaces the symmetrized traceless portion of
the stress tensor, Pαβ(t), by dynamic quantity

(17) δPαβ(t) = Pαβ(t)− 〈Pαβ〉,
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where

〈Pαβ〉 =
1

tsimul

∫ tNtot

t1

Pαβ(t)dt(18)

=
1

Ntot

Ntot∑
i=1

Pαβ(ti).

This modification changes a little bit some equations obtained in previous sec-
tions. Thus, one should be sustituted Pαβ by δPαβ in Eqs. 1, 4, 5, 8, 11, 13 and

14. Notice that
dAαβ(t)

dt
= δPαβ(t) for this modification.

4. Tests

I’ve implemented different code versions for shear viscosity algorithm which
I describe below. Trapezoidal and Simpson’s rules have been implemented for
numerical integration. For trapezoidal rule, there three different versions: (i) a
version which uses extended trapezoidal rule in the simplest way; (ii) a version
which uses trapezoidal rule in a recurrence relation form; and (iii) a version which
uses modified qtrap routine (see Numerical Recipes in Fortran 77: The art of
scientific computing, page 131). This last version allow to estimate if integrals
achieve the convergence for a desired fractional accuracy. For Simpson’s rule, there
are two different versions: (i) a version which uses extended Simpson’s rule in the
simplest way; and (ii) a version which uses modified qsimp routine (see Numerical
Recipes in Fortran 77: The art of scientific computing, page 133). Again, this last
version allow to estimate if integrals achieve the convergence for a desired fractional
accuracy. Besides, note that there is not way to implemented a recurrence relation
from Simpson’s rules which includes all time origins. On other hand, I’ve included
Borodin’s implementation in code versions so that one can compare the results.

Table 1 shows results for apparent shear viscosity (Eq. 16) using exact and
Borodin’s implementations as well as trapezoidal and Simpson’s quadratures for
numerical integration. Although one should have long time simulation for obtain-
ing shear viscosity and equilibration run has to be realised before production run,
these results shows as there is a significant different between exact and Borodin’s
implementations. Notice that trapezoidal rule in a recurrence form generates same
results as extended trapezoidal rule (the only difference is that recurrence form em-
ploys less CPU time). In turn, trapezoidal and Simpson’s quadratures show similar
results.

Tests about convergence of integrals using trapezoidal and Simpson’s rules (Eqs.
13 and 14) have been carried out. To this end, I’ve employed modified qtrap
and qsimp routines as indicated above. Moreover, I’ve designed an intelligent
algorithm. In this algorithm, if an integral doesn’t converge for a given elapsed time
then this elapsed time is not taking into account and, automatically, next elapsed
time is calculated. The result of these tests have been that none of elapsed times



IMPROVED ALGORITHMS FOR CALCULATING SHEAR VISCOSITY IN IONIC LIQUIDS 5

Table 1. 0.50LiTFSI − 0.50PY R14TFSI. Canonical ensemble
simulation. Time integration step of 10 fs for the stress tensor.
Total time simulation of 100 ps. t is elapsed time (in ps). ηtrap
and ηtrap,borodin are apparent shear viscosity for exact and Borodin’s
implementations (in Pa×s), respectively, using extended trapezoidal
rule. ηsimp is apparent shear viscosity (in Pa × s) using extended
Simpson’s rule.

t ηtrap ηtrap,borodin ηsimp
10 0.63094E-04 0.88190E-04 0.64741E-04
20 0.77157E-04 0.13088E-03 0.79451E-04
30 0.78902E-04 0.16960E-03 0.81334E-04
40 0.72403E-04 0.19270E-03 0.74756E-04
50 0.64734E-04 0.21490E-03 0.67082E-04

can be considered because always there are some integrals which don’t converge.
Therereby, one should explain this phenomenon. As is indicated in D. Bedrov, and
G . D. Smith, J. Chem. Phys., 112, 7203 (2000), some care must be taken in the
integration of Pαβ because the stress tensor exhibits strong oscillatory behavior
(see Fig. 2 in this paper). Thus, two important considerations have to be taking
into account before running simulations for obtaining shear viscosity. First, one
has to used sampling frequency of stress tensor lower than the fastest oscillations.
Second, large amounts of CPU time is requiered for shear viscosity calculations.
Additionally, alternative numerical integration methods could be an interesting
field in future for calculating integrals involved in shear viscosity.


