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1. THEORY

1.1. Charge transport due to self-diffusion. The charge transport due to self-

diffusion of a-type molecule XS, . .. can be calculated from Einstein relation as
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where V' and T' are volume and temperature of the system, kg is the Boltzmann
constant, 7,(t) is vector position at time t for one a-type molecule, and ¢, is ionic
charge of a-type molecule.

One can improve the statistical precision of results by averaging over the number
of a-type molecules in the system N,,
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The charge transport due to self-diffusion Ayycor is defined as

Ntype
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where Ny is the number of molecules types, and NN is the total number of

molecules. Notice that N = S Nwre N
1
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1.2. Total charge transport. The collective charge transport of a-type and
B-type molecules A*? can be calculated from Einstein relation as
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One can improve the statistical precision of results by averaging over the number
of a-type and S-type molecules in the system N, and NB,

N,
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The total charge transport X is defined as

Ntype Ntype
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2. IMPLEMENTATION

2.1. Charge transport due to self-diffusion. In realizing Eq. 2 from simula-
tion, the brackets would be interpreted as averages over time origins
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In simulations, one uses discrete time steps, so that one has a set of discrete
times {t1,tq,...,tN,,}, Where t; = tg+ (i — 1)At for i = 1,2,..., Ny and At is
the time step. Total time simulation is given by tgmw = tn,,, — t1. Time origins

belong to set of discrete times {t1,ts,...,ty,. }, where N, = Nt"t FElapsed time is
set equal to t = nAt, where n =1,2,...,N,,.. Thus,

(8> )\’IO,ZTLCOT'T = llm )\377/607'7" (t)
where
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9 A = N ri(t; + 1) — 75(t5)]”.
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Note that g, = z,e where e is the elementary charge.

Using Eqgs. 8 and 9 into Eq. 3, one can define
(10) )\uncorr = tlirg )\uncorr (t>
where
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From apparent self-diffusion constant of a-type molecule D, (t), Eq. 11 can be
written as
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e
uncorr t) = 2 aDa t s
(12) nernl®) = 7 D 22Dl

where n, = N,/N.

2.2. Total charge transport. In realizing Eq. 5 from simulation, the brackets
would be interpreted as averages over time origins
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In simulations, one uses discrete time steps, so that one has a set of discrete
times {t1,%a,...,tnN,, }, Where t; = to+ (i — 1)At for i = 1,2,.. .,Ntot and At is

the time step. Total time simulation is given by tgmuw = tn,,, — t1. Time origins
belong to set of discrete times {t1,ts,...,tyn,.}, where N, = N“’t Elapsed time is
set equal to t = nAt, where n =1,2,...,N,,.. Thus,
af — 1 af

(14) A = lim X4(1),
where

(15)
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Using Egs. 14 and 15 into Eq. 6, one can define

(16) A= lim A(t)
where
(17)
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A(t) = 6MBTNNW Za D2 Y DD [t 1) = Filtn)][Fy(te + 1) — (1))

a=1 p=1 i=1 j=1 k=1

For practical reasons, one defines the degree of uncorrelated ion motion as

(18) Ya = lim ya(?),
where
(19) nalt) = Auiﬁffm

Then, one calculates \ypeorr(t) from Eq. 12 using diffusion coefficients corrected
for the finite simulation cell size as well as apparent degree of uncorrelated ion
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motion 74(t). Finally, apparent total charge transport A(t) is obtained from Eq.
19.



