
IONIC CONDUCTIVITY

C. J. F. SOLANO

Contents

1. Theory 1
1.1. Charge transport due to self-diffusion 1
1.2. Total charge transport 2
2. Implementation 2
2.1. Charge transport due to self-diffusion 2
2.2. Total charge transport 3

1. Theory

1.1. Charge transport due to self-diffusion. The charge transport due to self-
diffusion of α-type molecule λαuncorr can be calculated from Einstein relation as

(1) λαuncorrV kBT = lim
t→∞

〈q2α [~rα(t)− ~rα(0)]2〉
6t

,

where V and T are volume and temperature of the system, kB is the Boltzmann
constant, ~rα(t) is vector position at time t for one α-type molecule, and qα is ionic
charge of α-type molecule.

One can improve the statistical precision of results by averaging over the number
of α-type molecules in the system Nα,

(2) λαuncorr =
1

V kBT
lim
t→∞

1

6t
〈 1

Nα

Nα∑
i=1

q2α [~ri(t)− ~ri(0)]2〉.

The charge transport due to self-diffusion λuncorr is defined as

(3) λuncorr =
1

N

Ntype∑
α=1

Nαλ
α
uncorr,

where Ntype is the number of molecules types, and N is the total number of

molecules. Notice that N =
∑Ntype

α=1 Nα.
1
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1.2. Total charge transport. The collective charge transport of α-type and
β-type molecules λαβ can be calculated from Einstein relation as

(4) λαβV kBT = lim
t→∞

〈qα [~rα(t)− ~rα(0)] · qβ [~rβ(t)− ~rβ(0)]〉
6t

.

One can improve the statistical precision of results by averaging over the number
of α-type and β-type molecules in the system Nα and Nβ,

(5) λαβ =
1

V kBT
lim
t→∞

1

6t
〈 1

Nα

Nα∑
i=1

qα [~ri(t)− ~ri(0)] · 1

Nβ

Nβ∑
j=1

qβ [~rj(t)− ~rj(0)]〉.

The total charge transport λ is defined as

(6) λ =
1

N

Ntype∑
α=1

Ntype∑
β=1

NαNβλ
αβ.

2. Implementation

2.1. Charge transport due to self-diffusion. In realizing Eq. 2 from simula-
tion, the brackets would be interpreted as averages over time origins

(7) λαuncorr =
1

V kBT
lim
t→∞

1

6t

{
lim
τ→∞

q2α
Nατ

Nα∑
i=1

∫ τ

0

[~ri(t0 + t)− ~ri(t0)]2 dt0

}
.

In simulations, one uses discrete time steps, so that one has a set of discrete
times {t1, t2, . . . , tNtot}, where ti = t0 + (i − 1)∆t for i = 1, 2, . . . , Ntot and ∆t is
the time step. Total time simulation is given by tsimul = tNtot − t1. Time origins
belong to set of discrete times {t1, t2, . . . , tNor}, where Nor = Ntot

2
. Elapsed time is

set equal to t = n∆t, where n = 1, 2, . . . , Nor. Thus,

(8) λαuncorr = lim
t→∞

λαuncorr(t),

where

(9) λαuncorr(t) =
e2

6tV kBT

z2α
NαNor

Nα∑
i=1

Nor∑
j=1

[~ri(tj + t)− ~ri(tj)]2 .

Note that qα = zαe where e is the elementary charge.
Using Eqs. 8 and 9 into Eq. 3, one can define

(10) λuncorr = lim
t→∞

λuncorr(t)

where

(11) λuncorr(t) =
e2

6tV kBTNNor

Ntype∑
α=1

z2α

Nα∑
i=1

Nor∑
j=1

[~ri(tj + t)− ~ri(tj)]2 .
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From apparent self-diffusion constant of α-type molecule Dα(t), Eq. 11 can be
written as

(12) λuncorr(t) =
e2

V kBT

Ntype∑
α=1

z2αnαDα(t),

where nα = Nα/N .

2.2. Total charge transport. In realizing Eq. 5 from simulation, the brackets
would be interpreted as averages over time origins
(13)

λαβ =
1

V kBT
lim
t→∞

1

6t

 lim
τ→∞

qαqβ
NαNβτ

Nα∑
i=1

Nβ∑
j=1

∫ τ

0

[~ri(t0 + t)− ~ri(t0)] · [~rj(t0 + t)− ~rj(t0)] dt0

 .

In simulations, one uses discrete time steps, so that one has a set of discrete
times {t1, t2, . . . , tNtot}, where ti = t0 + (i − 1)∆t for i = 1, 2, . . . , Ntot and ∆t is
the time step. Total time simulation is given by tsimul = tNtot − t1. Time origins
belong to set of discrete times {t1, t2, . . . , tNor}, where Nor = Ntot

2
. Elapsed time is

set equal to t = n∆t, where n = 1, 2, . . . , Nor. Thus,

(14) λαβ = lim
t→∞

λαβ(t),

where
(15)

λαβ(t) =
e2

6tV kBT

zαzβ
NαNβNor

Nα∑
i=1

Nβ∑
j=1

Nor∑
k=1

[~ri(tk + t)− ~ri(tk)] · [~rj(tk + t)− ~rj(tk)] .

Using Eqs. 14 and 15 into Eq. 6, one can define

(16) λ = lim
t→∞

λ(t)

where
(17)

λ(t) =
e2

6tV kBTNNor

Ntype∑
α=1

zα

Ntype∑
β=1

zβ

Nα∑
i=1

Nα∑
j=1

Nor∑
k=1

[~ri(tk + t)− ~ri(tk)]·[~rj(tk + t)− ~rj(tk)] .

For practical reasons, one defines the degree of uncorrelated ion motion as

(18) γd = lim
t→∞

γd(t),

where

(19) γd(t) =
λ(t)

λuncorr(t)
.

Then, one calculates λuncorr(t) from Eq. 12 using diffusion coefficients corrected
for the finite simulation cell size as well as apparent degree of uncorrelated ion
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motion γd(t). Finally, apparent total charge transport λ(t) is obtained from Eq.
19.


