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Abstract

We use the Silverstone and Moats’s expansion of a function about a displaced center [Phys. Rev.

A 16, 1731 (1977)] and the bipolar expansion of Kay, Todd, and Silverstone for r−1
12 [J. Chem. Phys.

51, 2359 (1969); ibid 51, 2363 (1969)] to derive analytical expressions for the two–center overlap,

nuclear attraction, and Coulomb integrals between real Slater type orbitals (STO) in terms of four

basic one–center radial integrals χX (X=I,II,III,IV). Explicit formulas are given for χX which are

extremely compact and numerically stable even for nearly equal orbital exponents. Modifications

of these formulas are also proposed to avoid instabilities for small internuclear distances. The

derived expressions are valid for an arbitrary orientation of the two nuclei and arbitrarily high

angular numbers of the STO’s with l ≤ n− 1, and they are easily split into long–range multipolar

interactions and short–range interactions. Finally, we derive expressions for short and long–range

electrostatic interactions between non–spherical closed–shell ions in terms of two–center integrals

between STO.
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I. INTRODUCTION

The computation of multi-center integrals (MI) over atom–centered basis functions is one

the fundamental problems in Quantum Chemistry. The simplicity of the calculation of MI

determines to a great extent the choice of the basis functions type for molecular calculations.

Thus, despite the fact that Gaussian type orbitals (GTOs) have shown wrong behavior at the

nuclei and at large distances, they are by far the most widely used to perform the nowadays

routine SCF Hartree–Fock–Roothaan (HFR) or Kohn–Sham (KS) calculations in molecules

and solids [1] due to the ease of computation of their MI. It is generally accepted, however,

that exponential type orbitals (ETOs) have an inherent greater quality than GTOs. More

specifically, atomic or/and molecular orbitals expressed in terms of ETOs may give a correct

asymptotic behavior at r → 0 and r → ∞, achieve the same accuracy in bonding regions

as GTO–based orbitals, and require smaller basis sets. This reduction in the number of

basis functions entails important advantages in the practical implementation of the SCF

segment of molecular programs. The computation of multi–center ETO molecular integrals

(ETOMI) has proven to be, however, one of the most difficult tasks in Quantum–Chemistry.

All the above facts have motivated the development of a great variety of methods to

evaluate ETOMI since the early days of quantum–mechanical HFR calculations. Although

it is practically impossible to discuss, or even to mention, all of these methods, articles in

References 2–11 collect a number of important contributions on this subject in the last years.

To establish which one of the currently available algorithms is the best one in absolute terms

is also probably utopic. At most, it can be stated that a particular method is faster, more

stable or more efficient than some other method in the specific conditions of comparison.

The best algebraic and computational algorithm is probably a combination of the methods

published in recent years. However, Fernández Rico et al.’s integral package employing

ETOs [12], the seed for a complete molecular LCAO program, deserves a special mention

here.

When a closed–shell ion suffers the action of an arbitrary external potential, its electron

density loses its spherical shape. However, the Spherical Symmetry Approximation (SSA)

has been widely used to compute the electronic structure of ions–in–crystals, being the

spatial orbitals, φi, classified according to the irreducible representations (irreps) of the O+
3

point group. This allows every φi to be expressed as the product of a spherical harmonic,
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Ylm(θ, φ), and a radial function, Rnl(r), independent of the azimutal quantum number (m).

The SSA involves some computational advantages but prevent a polarization of the electron

density. In spite of this shortcoming, a large variety of atomistic simulation methods [13–20],

progressively improved over the years, have provided accurate structural and thermodynamic

properties for highly symmetric crystalline solids [13–18, 21]. Nevertheless, the energetic

contribution due to the polarization of the electron density is of essential importance both to

compute accurate equilibrium geometrical parameters and to predict the stable crystalline

phase in specific conditions of pressure and temperature of low–symmetry crystals [22].

Neglecting polarization effects is probably also the responsible for the inaccurate prediction

of the elastic behaviour of ionic solids [23].

All the above facts stress the relevance of taking into account properly, not only the

radial relaxation, but also the polarization of the electron density for the ions in arbitrary

external potentials. In that case, every φi transforms according to one of the irreps of the

true symmetry point group for the ion and should be expressed as a linear combinations of

apropriate Symmetry Adapted Functions (SAF). The relaxation of the point group allows

for the mixing of SAF belonging to different atomic symmetries and also the splitting of the

atomic levels in so many sub–levels as required by the point group of the ion.

Mart́ın Pendás and Francisco have developed algorithms to compute spherical averages

of two–center nuclear attraction, Coulomb, and projection operator integrals [24] between

Slater type orbitals (STOs) (the most widely used ETOs in molecular and solid state calcula-

tions) using the Silverstone and Moats (SM) expansion of a function about a displaced center

[25]. These averages are the only ones required in the ab initio Perturbed Ion (aiPI) model

[19, 20], a localized quantum–mechanical scheme that solves the Hartree–Fock equations for

an ion–in–a–crystal taking as a central hypothesis the SSA. However, the generalization for

ions in external potentials of arbitrary symmetry makes useless the spherical averages pre-

viously derived in Ref. 24. The present work represents an application of the SM expansion

and the related Kay, Todd, and Silverstone expansion for r−1
12 [26], in order to compute the

basic integrals over STOs that are necessary in the generalized (i.e. non–spherical) method.

The proposed algorithms are tailored to be useful in this context, with emphasis on ex-

tracting long–range terms that have to be computed separately in infinite periodic systems.

In addition, we derive analytical expressions for the Electrostatic Interionic Energy EIE

between non–spherical ions and obtain explicit formulas for the multipolar coefficients.
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The outline of the article is as follows. In Section II, some definitions are given to

shorten the writing of the next Sections. In Section III, we develop compact, stable, and

fast algorithms for the overlap, nuclear attraction and Coulomb integrals over STOs. In

Section IV, simple expressions for the auxiliary radial functions χX(n1, n2, ζ1, ζ2;R) are given.

In Section V, some computational details and the problem of the numerical stability of

the algorithm for nearly equal orbital exponents and vanishing interatomic distance are

discussed. In Section VI, we define the SAF used in this work. In Section VII, we express

the EIE in terms of two–center integrals between STO and divide the EIE into both short–

range components and long–range or multipolar components. In Section VIII some tests are

carried out with the two–center integrals. Finally, we present our conclusions in Section IX.

II. DEFINITIONS

In this work we will use STOs ϕplm, defined as products of a radial function, χpl(r), and

a real spherical harmonic, Slm(r̂) (r is the modulus and r̂ the direction (θ, φ) of a vector ~r):

ϕplm(~r) = χpl(r)Slm(r̂) = χpl(r)Θl|m|(θ)Φm(φ), (1)

where

χpl(r) = Nplr
npl−1e−ζplr, Npl =

(2ζpl)
npl+

1
2√

(2npl)!
, (2)

Φm(φ) =



√
2 cos(mφ) m > 0,

1 m = 0,
√

2 sin(|m|φ) m < 0,

(3)

and [27]

Θlm(θ) = NlmP
m
l (cos θ), Nlm =

√√√√2l + 1

4π

(l −m)!

(l +m)!
, (4)

where Pm
l is the associated Legendre function.

Some definitions and properties concerning the Slm(r̂) functions are the following:

dl3m3
l1m1l2m2

= 〈Sl3m3|Sl1m1 |Sl2m2〉

=
∫

Ω
Sl3m3(r̂)Sl1m1(r̂)Sl2m2(r̂)dr̂, (5)

is the Gaunt coefficient between real spherical harmonics, that can be fast and straightfor-

wardly computed using, for instance, the algorithm in Ref. 28. T l3l1m1l2m2
(r̂) is the angular
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coefficient given by

T l3l1m1l2m2
(r̂) =

l3∑
m3=−l3

dl3m3
l1m1l2m2

Sl3m3(r̂), (6)

and, finally, the product of two different Slm is

Sl1m1(r̂)Sl2m2(r̂) =
l1+l2∑

l3=|l1−l2|
T l3l1m1l2m2

(r̂) (7)

Two atomic centers are labeled by R and S, their nuclei having vector positions ~rR and

~rS, respectively.

III. TWO–CENTER INTEGRALS BETWEEN SLATER TYPE FUNCTIONS

A. Overlap integral

The basic two–center overlap integral is

SRSpmpama =
〈
ϕRplpmp(~r − ~r

R)
∣∣∣ ϕSalama(~r − ~rS)

〉
. (8)

The quantum numbers and orbital exponents of the STOs centered at R and S are

(np, lp,mp, ζp) and (na, la,ma, ζa), respectively. Defining ~rX = ~r − ~rX and using Eq. 1,

we have

SRSpmpama =
∫
χRp (rR)Slpmp(r̂R)χSa (rS)Slama(r̂S)dτ. (9)

Using the SM expansion [25] of the S–centered function about the R–center in terms of real

spherical harmonics, SRSpmpama results in

SRSpmpama =
∫ ∞

0
drRχ

R
p (rR)

∫ ∞
0

drSχ
S
a (rS)(−1)lpr2

Rr
2
S

×
lp+la∑

l3=|lp−la|
T l3lpmplama(R̂)Olplal3(rR, rS, R), (10)

where ~R = ~rS − ~rR, the sum over l3 is for l3 + lp + la = even, and the function O is defined

as

Ol1l2l3(r1, r2, r3) = 4(−1)λ/2
∫ ∞
−∞

dkk2jl1(kr1)jl2(kr2)jl3(kr3), (11)

where λ = l1 + l2 + l3 is always even and jl(x) is the first class Bessel function of order l

jl(x) = (−1)lxl
(

1

x

d

dx

)l
sin(x)

x
. (12)
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Ol1l2l3(r1, r2, r3) is equivalent to the integral L(1)
l1l2l3

(r1, r2, r3) defined by Hierse and Oppeneer

in Ref. 11. Owing to the restricted allowed values of l3 in Equation 10, the relevant

contribution of Ol1l2l3(r1, r2, r3) can be written as [29]

Ol1l2l3(r1, r2, r3) = 2π
λ/2∑
s=0

λ/2−s∑
t=0

Dl1l2l3
λ
2
st

[
r2s−l1−1

1 r2t−l2−1
2 rλ−2s−2t−l3−1

3

]IV
(13)

where the superscript IV stands for the region IV of Fig. 1, characterized by |r1− r3| ≤ r2 ≤

(r1 + r3), and Dl1l2l3
λ
2
st is given by

Dl1l2l3lst = [(2s− 2l1 − 1)!!(2t− 2l2 − 1)!!(2l − 2s− 2t− 2l3 − 1)!!

× (2s)!!(2t)!!(2l − 2s− 2t)!!]−1 . (14)

Dl1l2l3lst is a generalization of the Dl2l3l1st coefficient defined by Pendás and Francisco [24],

i.e. Dl2l3l1st = Dl1l2l3(λ
2

)st. Substituting Equation 13 in Equation 10, we finally obtain

SRSpmpama = (−1)lp2πNpNaR
lp+la−1

lp+la∑
l3=|lp−la|

T l3lpmplama(R̂)A(0)(l3;np, lp, ζp, na, la, ζa;R),(15)

where A(0) (A in Ref. 24) is a particular case of the more general A(m) one–center radial

integral

A(m)(l3;n1, l1, ζ1, n2, l2, ζ2;R) =
sm∑
s=0

sm−s∑
t=0

Dl1l2l3smstR
−2s−2t

×χIV(n1 − l1 + 2s, n2 − l2 + 2t, ζ1, ζ2;R), (16)

with sm =
(
λ+2m

2

)
, and

χIV(n1, n2, ζ1, ζ2;R) =
∫ ∞

0
dr1 r

n1
1 e−ζ1r1

∫ r1+R

|r1−R|
dr2 r

n2
2 e−ζ2r2 . (17)

B. Coulomb integral

The two–center Coulomb integral is defined by

CRS
pmpama,qmqbmb

=
〈
ϕRplpmp(~rR)ϕSalama(~rS)

∣∣∣ r−1
12

∣∣∣ϕRqlqmq(~rR)ϕSblbmb(~rS)
〉
, (18)

where ~rR = ~r1 − ~rR and ~rS = ~r2 − ~rS. Expressing the STOs in angular and radial parts,

using ~r12 = ~rR − ~rS − ~R, the definitions

χR1 (rR) = χRp (rR)χRq (rR) = N1r
n1−2
R e−ζ1rR (19)

χS2 (rS) = χSa (rS)χSb (rS) = N2r
n2−2
S e−ζ2rS , (20)
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FIG. 1: The four regions in which the (r1,r2) plane is divided. a = r1 − r2 − r3, b = r2 − r3 − r1,

c = r3 − r1 − r2.

with n1 = np + nq, n2 = na + nb, ζ1 = ζp + ζq, ζ2 = ζa + ζb, N1 = NpNq, N2 = NaNb, and

using Eq. 7, Equation 18 transforms into

CRS
pmpama,qmqbmb

=
lp+lq∑

l1=|lp−lq |

la+lb∑
l2=|la−lb|

l1∑
m1=−l1

l2∑
m2=−l2

dl1m1
lpmplqmq

dl2m2
lamalbmb

4πCRS
12 (21)

where CRS
12 is the Coulomb integral between the charge distributions χ1 and χ2,

CRS
12 =

1

4π

∫
τR
dτR

∫
τS
dτS

χR1 (rR)Sl1m1(r̂R)χS2 (rS)Sl2m2(r̂S)

|~rR − ~rS − ~R|
. (22)

Using the bipolar expansion of Kay, Todd, and Silverstone [26] for r−1
12 = |~rR − ~rS − ~R|−1,

CRS
12 can be written as

CRS
12 =

∫ ∞
0

drR

∫ ∞
0

drS(−1)l1r2
Rχ

R
1 (rR)r2

Sχ
S
2 (rS)

×
l1+l2∑

l3=|l1−l2|
T l3l1m1l2m2

(R̂)× Vl1l2l3(rR, rS, R), (23)

where we have defined

Vl1l2l3(r1, r2, r3) = 4(−1)λ/2
∫ ∞
−∞

dkjl1(kr1)jl2(kr2)jl3(kr3), (24)

which is equivalent to L(0)
l1l2l3

(r1, r2, r3) in the notation of Hierse and Oppeneer [11]. Using

Equation 12 and the definition

Ôi = rlii

(
1

ri

d

dri

)li
, (25)
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with the property

Ôir
m
i =


m!!

(m−2li)!!
rm−lii (m odd) or (m ≥ 2li and even),

0 (m < 2li and even),
(26)

it is possible to show that Vl1l2l3(r1, r2, r3) can be written as [29]

Vl1l2l3(r1, r2, r3) = V a
l1l2l3

(r1, r2, r3) + V b
l1l2l3

(r1, r2, r3), (27)

with

V a
l1l2l3

(r1, r2, r3) = −2π
s1∑
s=0

s1−s∑
t=0

Dl1l2l3s1st

[
r2s−l1−1

1 r2t−l2−1
2 r2s1−2s−2t−l3−1

3

]IV
, (28)

where s1 = sm(m = 1) = λ
2

+ 1, and

V b
l1l2l3

(r1, r2, r3) = 2
(
F I

1 + F II
2 + F III

3

)
+
(
F IV

1 + F IV
2 + F IV

3

)
. (29)

In this equation FX
i (r1, r2, r3) is defined by:

FX
i (r1, r2, r3) = 2π∆lj lk

rljj rlkk
rli+1
i

X

δli,lj+lk , (30)

where i = 1, j = 2, and k = 3, and cyclic permutations, the superscript X stands for the

regions I, II, III, or IV of Fig. 1 in which FX
i (r1, r2, r3) is defined, and

∆lj lk = ∆lklj = (−1)lj+lk
(2lj + 2lk)!lj!lk!

(lj + lk)!(2lj + 1)!(2lk + 1)!
. (31)

Using Equations 28 and 29 in Equation 23, we obtain for CRS
12

CRS
12 = (−1)l12πN1N2

[
Ca + 2C1

I + 2C2
II + 2C3

III + C1
IV + C2

IV + C3
IV

]
, (32)

where

Ca = −R(l1+l2+1)
l1+l2∑

l3=|l1−l2|
T l3l1m1l2m2

(R̂)×A(1)(l3;n1 − 1, l1, ζ1, n2 − 1, l2, ζ2;R), (33)

C1
X = ∆l2|l1−l2|R

|l1−l2|χX(n1 − l1 − 1, n2 + l2, ζ1, ζ2;R)× T |l1−l2|l1m1l2m2
(R̂)δl1−l2,|l1−l2|, (34)

C2
X = ∆l1|l1−l2|R

|l1−l2|χX(n1 + l1, n2 − l2 − 1, ζ1, ζ2;R)× T |l1−l2|l1m1l2m2
(R̂)δl2−l1,|l1−l2|, (35)

and

C3
X = ∆l1l2R

−(l1+l2+1)χX(n1 + l1, n2 + l2, ζ1, ζ2;R)× T l1+l2
l1m1l2m2

(R̂). (36)

In the above four expressions, we have generalized the χIV integral to other regions of the

(r1, r2) plane, i.e.

χX(n1, n2, ζ1, ζ2;R) =
∫ ∫

X
dr1dr2r

n1
1 rn2

2 e−ζ1r1e−ζ2r2 , X = I, II, III, IV. (37)
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C. Nuclear attraction integral

This integral is defined as

ZRS
pmp,qmq = −ZS

〈
ϕRplpmp( ~rR)

∣∣∣ r−1
S

∣∣∣ϕRqlqmq( ~rR)
〉
. (38)

Transforming the operator as r−1
S = |~r−~rS|−1 = |~rR− ~R|−1, so that the variable ~r is referred

to the same center as ϕRplpmp and ϕRqlqmq , and using the Laplace expansion

|~rR − ~R|−1 =
∞∑
k=0

4π

2k + 1

rk<
rk+1
>

k∑
m=−k

Skm(r̂R)Skm(R̂), (39)

the angular and radial parts can be integrated separately, giving

ZRS
pmp,qmq = −ZS

lp+lq∑
k=|lp−lq |

4π

2k + 1
× T klpmplqmq(R̂)× IRkpq(R), (40)

where the selection rules of the Gaunt coefficients have been taken into account and IRkpq(R)

is the radial integral

IRkpq(R) =
∫ ∞

0

rk<
rk+1
>

χRp (rR)χRq (rR)r2
RdrR. (41)

Separating the integral in two domains [0, R] + [R,∞], it can be easily expressed in terms

of the µn(x) function considered in the next Section. The resulting expression is

IRkpq(R) = N1
(n1 + k)!

ζn1+k+1
1

R−k−1 −N1R
n1µn1+k(ζ1R) +N1R

n1µn1−k−1(ζ1R), (42)

using N1, n1, and ζ1 definitions from the previous Subsection.

IV. EVALUATION OF THE INTEGRALS χX(n1, n2, ζ1, ζ2;R)

The basic integrals appearing in the Coulomb and Overlap integrals,

χX(n1, n2, ζ1, ζ2;R) =
∫ ∫

X
dr1dr2r

n1
1 rn2

2 e−ζ1r1e−ζ2r2 , X = I, II, III, IV, (43)

where X stands for one of the four regions of Fig. 1, can be computed from χX(0, 0, ζ1, ζ2;R)

using the relation

χX(n1, n2, ζ1, ζ2;R) =

(
− ∂

∂ζ1

)n1
(
− ∂

∂ζ2

)n2

χX(0, 0, ζ1, ζ2;R). (44)
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For χI(0, 0, ζ1, ζ2;R) and χII(0, 0, ζ1, ζ2;R) we obtain

χI(0, 0, ζ1, ζ2;R) =
e−ζ1R

ζ1(ζ1 + ζ2)
, (45)

χII(0, 0, ζ1, ζ2;R) =
e−ζ2R

ζ2(ζ1 + ζ2)
, (46)

and, using Eq. 44,

χI(n1, n2, ζ1, ζ2;R) = Rn1+n2+2
n1∑
u=0

(
n1

u

)
Nu!µu(ζ1R)

(2α)Nu+1
, (47)

χII(n1, n2, ζ1, ζ2;R) = Rn1+n2+2
n2∑
u=0

(
n2

u

)
Nu!µu(ζ2R)

(2α)Nu+1
, (48)

where α = 1
2
(ζ1 + ζ2)R, Nu = n1 + n2 − u, and the µ function is defined as

µn(x) =

(
− d

dx

)n
e−x

x
=

n∑
s=0

n!

(n− s)!
e−x

xs+1
. (49)

In the case of χIII(0, 0, ζ1, ζ2;R), we have

χIII(0, 0, ζ1, ζ2;R) =
1

ζ1ζ2

+
e−ζ1R

ζ1(ζ1 − ζ2)
+

e−ζ2R

ζ2(ζ2 − ζ1)
, (50)

and, applying Eq. 44, we obtain after some algebraic manipulation

χIII(n1, n2, ζ1, ζ2;R) =
n1!n2!

ζn1+1
1 ζn2+1

2

+ (−1)n2Rn1+n2+2

[
n1∑
u=0

(
n1

u

)
Nu!µu(ζ1R)

(2β)Nu+1

−
n2∑
u=0

(
n2

u

)
(−1)u

Nu!µu(ζ2R)

(2β)Nu+1

]
, (51)

where β = 1
2
(ζ1 − ζ2)R.

To compute χIV(n1, n2, ζ1, ζ2;R), we use the symmetrical method developed by Hierse

and Oppeneer [11]. The final result is

χIV(n1, n2, ζ1, ζ2;R) = Rn1+n2+2
n1+n2∑
u=0

Cn1n2u × µn1+n2−u(α)× νu(β), (52)

where the ν function is defined as

νn(x) =

(
d

dx

)n
sinhx

x
, (53)

and Cn1n2u is given by

Cn1n2u =
1

2n1+n2

min(u,n1)∑
s=max(u−n2,0)

(−1)s
(
n1

s

)(
n2

u− s

)
. (54)
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The Cn1n2u coefficients satisfy the following recurrence relations that are useful for their

computation [11]

Cn1n2u = (−1)uCn2n1u (55)

2C(n1+1)n2u = Cn1n2u − Cn1n2(u−1) (56)

2Cn1(n2+1)u = Cn1n2u + Cn1n2(u−1). (57)

Some of the previously available algorithms for the computation of two–center ETOMI

become numerically unstable for nearly equal orbital exponents. In our expressions, this

would be the case with the basic integral χIII, that is divergent when |ζ1 − ζ2| → 0. The

formalism we have developed, however, has the property

IV∑
i=I

χi(n1, n2, ζ1, ζ2;R) =
n1!n2!

ζn1+1
1 ζn2+1

2

= F (n1, n2, ζ1, ζ2). (58)

Thus, the χIII integral can be computed in all the cases using χIII = F −χI−χII−χIV, that

is completely stable for |ζ1 − ζ2| → 0. When ζ1 = ζ2 = ζ, the formula for χIII reduces to

χIII(n1, n2, ζ, ζ;R) = F (n1, n2, ζ, ζ)− n1!n2!Rn1+n2+2µn1+n2+1(ζR)

(n1 + n2 + 1)!
. (59)

It is interesting to notice that all the χX integrals except χIII decay exponentially with

R due to the presence of the µ(x) function in their expressions. On the other hand, the

F (n1, n2, ζ1, ζ2) contribution to χIII (see the leading term in Eq. 51) is the only one being R–

independent, all other χX contributions decaying exponentially with R. This F (n1, n2, ζ1, ζ2)

contribution is absent from overlap integrals, which only depend on χIV and thus decay

exponentially. F (n1, n2, ζ1, ζ2) is, on the other hand, present in Coulomb integrals, and

through Eqs. 21, 32, and 36, it can be seen that it leads to a R−(l1+l2+1) dependence, quite

similar to the R−k−1 one in nuclear attraction integrals (see Eq. 42). These two terms can

be labelled as long range terms, in opposition to the exponential decay of the rest, and

they lead to the multipolar (i.e., charge–charge, multipole–charge, and multipole–multipole)

interaction energies in ionic systems as discussed in Section VII.

V. COMPUTATIONAL DETAILS AND NUMERICAL STABILITY

It is first worthwhile to remark that the computation of the A(m) integral (see Eq. 16)

can be sped up by reducing the number of loops in the following way: Substituting Eq. 52

11



in Eq. 16 we have

A(m)(l3;n1, l1, ζ1;n2, l2, ζ2;R) = RNmax+2
sm∑
s=0

sm−s∑
t=0

Dl1l2l3smst

×
Nmax+2s+2t∑

u=0

C(n1+2s−l1)(n2+2t−l2)u × µNmax+2s+2t−u(α)× νu(β), (60)

where Nmax = n1 + n2 − l1 − l2. The double sum over s and t, that runs over the left top

triangle of a sm × sm square matrix, can be also written as an external loop extended to

r = s + t, and an internal one running over the values of s compatible with the value of

r (i.e. s = 0, . . . , r; t = r − s). Developing the expression of the Dl1l2l3smst coefficient, the

A(m) integral can be put as

A(m)(l3;n1, l1, ζ1;n2, l2, ζ2;R) =
sm∑
r=0

RNmax+2D(sm−r)l3

×
Nmax+2r∑
u=0

µNmax+2r−u(α)× νu(β)× E(l1, n1 − l1, l2, n2 − l2, r, u), (61)

where the coefficients E, given by

E(l1, n1, l2, n2, r, u) =
r∑
s=0

C(n1+2s)(n2+2r−2s)uDsl1D(r−s)l2 , (62)

with

Dab = [(2a)!!(2a− 2b− 1)!!]−1 , (63)

only depend on natural numbers, and are independent of ζ1 and ζ2. We have found that

E(l1, n1, l2, n2, r, u) is zero when u < 2r − l1 − l2 and sm ≤ l1 + l2. So, the lower limit of u

in Eq. 61 can be put as umin = max(2r − l1 − l2, 0) when sm ≤ l1 + l2. This is the case of

the overlap integral (m = 0), where the maximum value of sm is l1 + l2. In the Coulomb

integrals (m = 1), the lower limit of u in Eq. 61 must be 0 only when r = sm = l1 + l2 + 1,

that, in turn, can only happen if l3 = l1 + l2.

Regarding the computation of the auxiliary functions, µn(x) can be computed for any

x > 0 using the stable ascending recurrence formula

µn+1(x) =
1

x

[
(n+ 1)µn(x) + e−x

]
, (64)

with µ0(x) = e−x/x.

The ν function has a closed formula. To avoid numerical instabilities, however, it is

convenient to use an algorithm based on the recurrence relations given by Hierse and Oppe-

neer [11] on its computation. If the index of the function is smaller than |β|, the ascending

12



recurrence

νu(β) =
1

β
[cosh β − uνu−1(β)] , (65)

νu+1(β) =
1

β
[sinh β − (u+ 1)νu(β)] , (66)

with u = odd, is stable, and the starting point of the recursion is ν0(β) = sinh β/β. For

values of the index greater than |β|, the stable recurrence formula is the descending one

νu(β) =
1

u+ 1
[cosh β − βνu+1] , (67)

νu−1(β) =
1

u
[sinh β − βνu] , (68)

with u = even. The reference value will be that corresponding to the greatest necessary

index, m, that is computed using

νm(β) =

 cosh β u(1)
m (β)− sinh β u(2)

m (β) m even,

sinh β u(1)
m (β)− cosh β u(2)

m (β) m odd,
(69)

where

u(1)
m (β) =

∞∑
j=0

m!

(m+ 2j + 1)!
β2j, (70)

u(2)
m (β) =

∞∑
j=0

m!

(m+ 2j + 2)!
β2j+1, (71)

are two convergent series provided that m ≥ |β|. The loss in precision using this scheme

is negligible in double precision (8 bytes) arithmetics: the relative error is below 10−15 for

a certain range about the u ' |β| turnover value for both the ascending and descending

recurrences, as seen in Figure 2. For u = 0 the ascending recurrence is stable for β > 0.02,

while the descending one is essentially exact for β < 3; for u = 7 their ranges are β > 5 and

β < 9, while for u = 23 they are β > 21 and β < 29, respectively. It should be remarked that

the descending recurrence does not introduce further errors from those already in the infinite

series involved on its starting value, Eq. 69: using these series and Eq. 69 for u = m = 7

(dotted line) has a performance similar to using it for m = 32 and then use the descending

recurrence up to u = 7 (dashed line).

On the other hand, care should be taken with extreme values of |β|. If β = 0, that

is, either R → 0 or both orbital exponents in χIV are equal, none of the above recursion
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FIG. 2: Relative error (in log scale) for the different computational schemes of νu(β): asc corre-

sponds to the ascending recurrence in Eqs. 65 and 66 starting from u = 0, des to the descending

recurrence in Eqs. 67 and 68 starting from the max(u) = m series in Eq. 69 (in this Figure, m = 32

was selected), and ser to the series in Eq. 69 computed for the particular m = u value. u = 0

(circles), u = 7 (lines only), and u = 23 (squares) νu functions were computed as a function of β,

ranging from 0.01 to 1 (log scale, left part) and from 1 to 40 (linear scale, right part).

formulas are valid. However, in that case

νu(0) =


1

u+1
u even,

0 u odd.
(72)

Finally, when R is very large, the β values can produce overflow in the hyperbolic functions.

In that case, it is convenient to transfer the factor e−α of the µ function to the ν function.

With this trick, the exponentials to be evaluated will be those of β − α and −α − β. As

α > |β|, there is warranty that all the exponentials to be evaluated are numbers smaller

than 1. At the same time, the µ function is still convergent (α � 1 for large R values).

In this way, the ν function can be accurately computed, no matter the values of the index

and the argument. All the recurrence relations are stable in this scheme, the infinite series

converge very fast and the scarce overflow cases are appropriately considered.

Another divergence condition arises for R → 0 in the overlap integrals, due to the way

in which we have defined the µ function in Eq. 49. However, this divergence can be avoided

just by removing the factors Rlp+lq−1 and RNmax+2 from Eqs. 15 and 61, respectively, and
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redefining the µ function as

µn(x) =

[
2

ζ1 + ζ2

]n1+n2+1 n∑
s=0

n!

(n− s)!
xn1+n2−se−x. (73)

Given the selection rule for the E coefficient, the maximum value of n in the previous

equation is n1 +n2. Thus, the minimum power of x in Eq. 73 is always 0 and the µ function

can be computed without any special care even for R = 0.

In the case of the Coulomb integrals, it is possible to redefine the µ functions so as to make

the C1
I , C1

IV, C2
II, and C2

IV contributions to CRS
12 (see Eq. 32) completely stable for R → 0.

However, the terms Ca, C
3
III, and C3

IV inevitably diverge in the limit R → 0, though the

individual singularities produced by these three contributions exactly cancel in this case. To

avoid this instability, Hierse and Oppeneer [11] have given a simple and pragmatic solution

that consists in putting exp(−x)/xn = 0 if x ≤ xcutoff (xcutoff ' 10−11). With this additional

precaution, the formulas for the Coulomb integrals are stable regardless the value of R.

On the other hand, the divergence when R → 0 in the nuclear attraction basic integral

given in Eq. 42 can be easily avoided using

IRkpq(R) = N1R
n1

∞∑
t=0

xt

t!(n1 + k + t+ 1)
+

n1−k−1∑
s=0

(n1 − k − 1)!

(n1 − k − 1− s)!
Rn1−s−1ζ−s−1

1 e−x, (74)

where x = ζ1R. This first sum over t converges very quickly for small values of x and the

total expression is absolutely stable even for R = 0, where IRkpq(R = 0) = N1δk,0
(n1−1)!

ζ
n1
1

.

Although the above considerations in the limit R→ 0 are obviously important to confer

robustness to the algorithm, an interatomic distance as small as to produce instabilities

in our standard formulas is, however, highly improbable in a realistic quantum–chemical

calculation. For this reason, we believe more appropriate to test the value of R at the very

beginning of the computer code and warn the user that the integral is in fact a mono-centric

one if R < Rcutoff ' 0.1 bohr. One–center formulas could be used in that case. Because the

expressions we have derived could be used in solid state calculations of ionic crystals , the

most difficult and relevant numerical instability in this case is when R → ∞, and, in this

limit, the algorithms developed here are perfectly stable.

VI. SYMMETRY ADAPTED FUNCTIONS

Let us define the set {Â, . . . , R̂, . . .} formed by the nG (proper and improper) rotations

of the symmetry point group G for the ion under study, where nG is the group order. If R̂
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acts on a primitive basis function, ϕplm(~r), one obtains

R̂ϕplm(~r) = χpl(r)R̂Slm(r̂) (75)

because the point group symmetry operations do not modify the distances to the origin. In

turn, when R̂ acts on a real spherical harmonic, Slm(r̂), is obeyed the following relationship:

R̂Slm(r̂) =
l∑

m′=−l
Slm′(r̂)∆l

m′m(R̂), (76)

where the (2l + 1) × (2l + 1) square matrix ∆l(R̂) is equivalent to the Wigner rotation

matrix for the real case and can be computed using different published schemes [31, 32].

Notice that the real spherical harmonics with order l make up a basis (or a complet set)

formed by 2l+ 1 orthonormal vectors. Moreover, the set formed by the nG matrices Ω(∆) =

{∆l(Â), . . . ,∆l(R̂), . . .} is a particular representation of the symmetry point group G whose

dimension is 2l + 1.

The vector σΓµ,k
l (r̂) transforms as the subspecie of symmetry µ belonging to the irreducible

representation (irrep) Γ if it satisfies the following relationship:

R̂σΓµ,k
l (r̂) =

nΓ∑
µ′=1

σΓµ′,k
l (r̂)DΓ

µ′µ(R̂), (77)

where nΓ ≤ 2l + 1 is the number of subspecies of symmetry and the nΓ × nΓ square matrix

DΓ(R̂) associated to the symmetry operation R̂ represents the irrep Γ. The set formed

by the nΓ vectors {σΓ1,k
l , σΓ2,k

l , . . . , σΓnΓ,k
l } is a proper basis for the irrep Γ, where each of

these vectors are called eigenvectors or Symmetry Adapted Functions (SAF). The SAF only

depend on the angular coordinates r̂ and can be obtained through

σΓµ,k
l (r̂) =

l∑
m=−l

uΓµ,k
lm Slm(r̂), (78)

where the uΓµ,k
lm are the Symmetry Coefficients (SC). Notice that the label k is a running index

to differenciate SAF with a common value of l, Γ, and µ, but this only happen when the irrep

Γ appears more than once included on the direct sum of the reducible representation Ω(∆).

The SC only depend on the point group of the ionic center and on the angular momentum

of the SAF. Moreover, they can be efficiently determined using the character tables for the

point groups. The SAF can be selected as an orthonormal set of vectors:

〈σΓµ,k
l |σΓ′µ′,k′

l′ 〉 = δΓΓ′δµµ′δll′δkk′ , (79)
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where (δΓΓ′ ,δµµ′) are a result of enforcing the great orthogonality theorem, δll′ is a result of the

orthonormality presented by the real spherical harmonics, and δkk′ is an arbitrary election.

The Symmetry Basis Functions (SBF) can be obtained through

λΓµ,k
pl (~r) = χpl(r)σ

Γµ,k
l (r̂). (80)

Using Eq. 78 in Eq. 80 we have

λΓµ,k
pl (~r) =

l∑
m=−l

uΓµ,k
lm ϕplm(~r). (81)

Therefore, the SBF are linear combination of the primitive basis functions and their coeffi-

cients match up with the SC.

The spatial orbitals of the ion, φ, are expressed in terms of the λΓµ,k
pl (~r), as

φΓµ
i (~r) =

∑
plk

cΓ
iplkλ

Γµ,k
pl (~r), (82)

where, as usually, the orbital coefficients cΓ
iplk are µ–independent and i is an ordinal number

within the complete set of φi functions corresponding to the Γ irrep.

In general, φΓµ
i (~r) can not be factorized in an angular and a radial part. If we substitute

Eq. 80 in Eq. 82, we obtain

φΓµ
i (~r) =

∑
plk

cΓ
iplkχpl(r)σ

Γµ,k
l (r̂) =

∑
lk

RΓ
ilk(r)σ

Γµ,k
l (r̂), (83)

where the radial functions RΓ
ilk(r) are

RΓ
ilk(r) =

∑
p

cΓ
iplkχpl(r). (84)

Therefore, the angular part cannot be saparated as a common factor in Eq. 83 because SAF

with different l and k values can, in principle, contribute to φΓµ
i (~r). This separation is only

possible when the point symmetry group is O+
3 (spherical symmetry).

To simplify the notation in the following sections, the p, l and k indices will be collected

in a single index p that runs over all the functions corresponding to a given value of µ and

Γ. In this way, φΓµ
i can be written as

φΓµ
i (~r) =

∑
p

cΓ
ipλ

Γµ
p (~r) =

∑
p

cΓ
ip

∑
m

u
Γµ,kp
lpm

ϕplpm(~r), (85)

where lp is the l value of the pth SBF and kp is the index of the function within the set of

SAF with angular momentum l that transform according to Γ and µ.
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VII. ELECTROSTATIC INTERACTION ENERGY

In this Section, we will derive analytical expressions for the Electrostatic Interaction

Energy (EIE), V RS, between two ions R (point group G) and S (point group G ′) in terms

of basic integrals between SBF centered at both ions. Let ~rR and ~rS the vector positions of

the R and S nuclei, respectively. V RS is given by

V RS = −ZRV̂ S
loc(~r

R) + 2
∑
Γµ

∑
i

NR,Γ∑
p,q=1

cR,Γip cR,Γiq

〈
λR,Γµp

∣∣∣V̂ S
loc

∣∣∣λR,Γµq

〉
, (86)

where the index i runs on occupied orbitals of the closed–shell ion R belonging to the Γ irrep,

NR,Γ is the number of the SBF in the Γ irrep, and the (classical) local potential created by

the ion S

V̂ S
loc = ÛS + ĴS (87)

is formed by the nuclear potential ÛS and the Coulomb operator ĴS. The first term in

Eq. 86 is the interaction energy between R nucleus and the S nucleus+electrons, while the

second term is the interaction energy between R electrons and the S nucleus+electrons.

A. Nuclear attraction interaction

The nuclear potential created by the ion S at ~r1 is

ÛS(~r1) = − ZS

|~r1 − ~rS|
. (88)

Let us define the average integrals
(
V RS

nuc

)
Γpq

as

(
V RS

nuc

)
Γpq

=
1

nΓ

∑
µ

〈
λR,Γµp

∣∣∣ ÛS(~r1)
∣∣∣λR,Γµq

〉
, (89)

where Γpq is a complex index, called density charge, which runs over all irreps and, for

each of them, over all possible pairs of SBF. Thus, the average integrals
(
V RS

nuc

)
Γpq

are one–

dimensional arrays or supervectors where the matrix elements have to be stored in a similar

manner to as described in Ref. [33]. Hereafter we assume that the matrices only depending

on density charge are always supervectors. Using Eq. 88 and developing the SBF in terms

of the primitive basis functions (Eq. 81)
(
V RS

nuc

)
Γpq

transforms to

(
V RS

nuc

)
Γpq

=
∑
mpmq

UR,Γpq
mpmqZ

RS
pmp,qmq , (90)
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where the basic nuclear attraction integrals ZRS
pmp,qmq are defined in Eqs. 40 and 41 and

UΓpq
mpmq = UΓqp

mqmp =
1

nΓ

∑
µ

u
Γµ,kp
lpmp

u
Γµ,kq
lqmq

(91)

are average symmetry coefficients.

Substituting the analytical expression for the nuclear attraction integrals in Eq. 90,(
V RS

nuc

)
Γpq

can be written as(
V RS

nuc

)
Γpq

=
(
V RS

nuc,lr

)
Γpq

+
(
V RS

nuc,sr

)
Γpq

, (92)

where (
V RS

nuc,lr

)
Γpq

= −ZSNR
pq

lp+lq∑
l=|lp−lq |

(nRpq + l)!

(ζRpq)
nRpq+l+1

R−l−1

× 4π

2l + 1

 ∑
mpmq

UR,Γpq
mpmqT

l
lpmplqmq(R̂)

 ,
(
V RS

nuc,sr

)
Γpq

= −ZSNR
pqR

nRpq

lp+lq∑
l=|lp−lq |

[
µnRpq−l−1(ζRpqR)− µnRpq+l(ζ

R
pqR)

]

× 4π

2l + 1

 ∑
mpmq

UR,Γpq
mpmqT

l
lpmplqmq(R̂)

 . (93)

Notice that ~R = ~rS − ~rR (R is the modulus and R̂ the direction (Θ,Φ) of a vector ~R),

NR
pq = NR

qp = NR
plpN

R
qlq , n

R
pq = nRqp = nRplp + nRqlq , and ζRpq = ζRqp = ζRplp + ζRqlq . The real

numbers (NR
plp , N

R
qlq) are the normalization constants for the radial functions (χRplp , χ

R
qlq) (see

Eq. 2). In turn, the natural numbers (nRplp , n
R
qlq) and the real numbers (ζRplp , ζ

R
qlq) are the

principal quantum numbers and the orbital exponentials, respectively, for the radial func-

tions (χRplp , χ
R
qlq). Aditionally, the angular coefficients T llpmplqmq and the µn functions are also

definied in Eqs. 6 and 64. The
(
V RS

nuc,lr

)
Γpq

term, with a dependence R−l−1, is the long–range

one and decreases very slowly with R. However, the
(
V RS

nuc,sr

)
Γpq

term is of a short–range

character due to the µn function.

B. Coulomb interaction between electrons

The Coulomb operator can be expressed in terms of the electronic charge distribution of

closed–shell ion S, ρS(~r2), as:

ĴS(~r1) =
∫ ρS(~r2)

|~r1 − ~r2|
d~r2 = 2

∑
Γ′µ′

∑
i

〈
φS,Γ

′µ′

i

∣∣∣ r−1
12

∣∣∣φS,Γ′µ′

i

〉
, (94)
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where the S superscript has been used to indicate the center to which the functions corre-

spond. Expressing the orbitals in terms of the SBF (Eq. 85) we have

ĴS(~r1) = 2
∑
Γ′µ′

∑
i

NS,Γ′∑
a=1

NS,Γ′∑
b=1

cS,Γ
′

ia cS,Γ
′

ib

〈
λS,Γ

′µ′

a

∣∣∣ r−1
12

∣∣∣λS,Γ′µ′

b

〉
=

∑
Γ′ab

ρSΓ′ab

1

nΓ′

∑
µ′

〈
λS,Γ

′µ′

a

∣∣∣ r−1
12

∣∣∣λS,Γ′µ′

b

〉
, (95)

where ρSΓ′ab is the density matrix

ρSΓpq = (2− δpq)
∑
i∈Γ

MS,Γ
i cS,Γip c

S,Γ
iq , (96)

and MS,Γ
i is the number of electrons of S ion which fill the ith orbital of the Γ irrep. Note

that MS,Γ
i = 2nΓ in closed–shell ions. Let us define the average integrals

(
V RS

el

)
Γpq

as

(
V RS

el

)
Γpq

=
1

nΓ

∑
µ

〈
λR,Γµp

∣∣∣ ĴS(~r1)
∣∣∣λR,Γµq

〉
. (97)

Using Eq. 95 in Eq. 97
(
V RS

el

)
Γpq

becomes

(
V RS

el

)
Γpq

=
∑
Γ′ab

ρSΓ′abW
RS
Γpq,Γ′ab, (98)

where WRS
Γpq,Γ′ab are the average Coulomb operator integrals

WRS
Γpq,Γ′ab =

1

nΓnΓ′

∑
µ

∑
µ′

〈
λR,Γµp λS,Γ

′µ′

a

∣∣∣ r−1
12

∣∣∣λR,Γµq λS,Γ
′µ′

b

〉
. (99)

Notice that the average Coulomb operator integrals are (two–dimensional arrays or) super-

matrices whose elements are storing and ordering in the same way described in Ref. [33].

Hereafter we assume that the matrices whose elements are labelled by means of two charge

densities are, therefore, supermatrices. Developed in terms of the basis functions of the SBF,

the average Coulomb operator integrals are given by

WRS
Γpq,Γ′ab =

1

nΓnΓ′

∑
µ

∑
µ′

∑
mpmqmamb

u
R,Γµ,kp
lpmp

u
R,Γµ,kq
lqmq

uS,Γ
′µ′,ka

lama
uS,Γ

′µ′,kb
lbmb

×
〈
ϕRplpmpϕ

S
alama

∣∣∣ r−1
12

∣∣∣ϕRqlqmqϕSblbmb〉
=

∑
mpmqmamb

UR,Γpq
mpmqU

S,Γ′ab
mamb

CRS
pmpama,qmqbmb

, (100)

where the basic bicentrinc Coulomb integrals CRS
pmpama,qmqbmb

were defined in Eqs. 21 and

32.
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One can reach a compact analytical expression for theW integral. However, it is necessary

to introduce some alternative definitions related to the χ and A basic integrals previously

defined. Thus, we define the basic integrals

ωX(n1, n2, ζ1, ζ2;R) =
χX(n1, n2, ζ1, ζ2;R)

Rn1+n2+2
, (101)

where X =I,II,IV. On other hand, only the χIII integral has long–range contribution, such

as is previously discussed. Let us define

ωIII
sr (n1, n2, ζ1, ζ2;R) = −

[
ωI(n1, n2, ζ1, ζ2;R) + ωII(n1, n2, ζ1, ζ2;R)

+ ωIV(n1, n2, ζ1, ζ2;R)
]
, ζ1 6= ζ2 (102)

ωIII
sr (n1, n2, ζ, ζ;R) = −n1!n2!µn1+n2+1(ζR)

(n1 + n2 + 1)!
, (103)

ωIII
lr (n1, n2, ζ1, ζ2) = F (n1, n2, ζ1, ζ2) =

n1!n2!

ζn1+1
1 ζn2+1

2

, (104)

where ωIII
sr and ωIII

lr are short–range and long–range contributions, respectively. Finally, we

define the one–center radial integral

A(l3;n1, l1, ζ1;n2, l2, ζ2;R) =
A(1)(l3;n1, l1, ζ1;n2, l2, ζ2;R)

Rn1+n2−l1−l2+2
. (105)

If one uses the above definitions, the W integral can be divided into both a short–range

and a long–range contribution,

WRS
Γpq,Γ′ab = WRS,sr

Γpq,Γ′ab +WRS,lr
Γpq,Γ′ab, (106)

such that

WRS,sr
Γpq,Γ′ab = (−1)lp+lq8π2NR

pqN
S
abR

nRpq+n
S
ab+1

lp+lq∑
l1=|lp−lq |

la+lb∑
l2=|la−lb|

×


− l1+l2∑
l3=|l1−l2|

Al1l2l3(Γpq,Γ′ab; R̂)A(l3;nRpq − 1, l1, ζ
R
pq;n

S
ab − 1, l2, ζ

S
ab;R)


+ Al1l2(l1+l2)(Γpq,Γ′ab; R̂)B(nRpq, l1, ζ

R
pq;n

S
ab, l2, ζ

S
ab;R)

+ Al1l2|l1−l2|(Γpq,Γ′ab; R̂)C(nRpq, l1, ζRpq;nSab, l2, ζSab;R)

}
, (107)

and

WRS,lr
Γpq,Γ′ab = (−1)lp+lq16π2NR

pqN
S
ab

lp+lq∑
l1=|lp−lq |

la+lb∑
l2=|la−lb|

R−(l1+l2+1)

×Al1l2(l1+l2)(Γpq,Γ′ab; R̂)D(nRpq, l1, ζ
R
pq;n

S
ab, l2, ζ

S
ab). (108)
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In Eqs. 107 and 108 we have introduced the radial integrals

C(n1, l1, ζ1;n2, l2, ζ2;R) = δl1−l2,|l1−l2|∆l2|l1−l2|
(
2ωI(n1 − l1 − 1, n2 + l2, ζ1, ζ2;R)

+ ωIV(n1 − l1 − 1, n2 + l2, ζ1, ζ2;R)
)

+ δl2−l1,|l1−l2|∆l1|l1−l2|
(
2ωII(n1 + l1, n2 − l2 − 1, ζ1, ζ2;R)

+ ωIV(n1 + l1, n2 − l2 − 1, ζ1, ζ2;R)
)
, (109)

B(n1, l1, ζ1;n2, l2, ζ2;R) = ∆l1l2

(
2ωIII

sr (n1 + l1, n2 + l2, ζ1, ζ2;R)

+ ωIV(n1 + l1, n2 + l2, ζ1, ζ2;R)
)
, (110)

the angular coefficient

Al1l2l3(Γpq,Γ′ab; R̂) =
∑

mpmqmamb

UR,Γpq
mpmqU

S,Γ′ab
mamb

{ ∑
m1m2

dl1m1
lpmplqmq

dl2m2
lamalbmb

T l3l1m1l2m2
(R̂)

}
, (111)

and

D(n1, l1, ζ1;n2, l2, ζ2) = ∆l1l2ω
III
lr (n1 + l1, n2 + l2, ζ1, ζ2). (112)

Notice that the ∆ coefficients are defined in Eq. 31.

Substituting Eq. 106 in Eq. 98,
(
V RS
el

)
Γpq

can be written as(
VRS

el

)
Γpq

=
(
VRS

el,sr

)
Γpq

+
(
VRS

el,lr

)
Γpq

, (113)

where (
VRS

el,sr

)
Γpq

=
∑
Γ′ab

WRS,sr
Γpq,Γ′abρ

S
Γ′ab, (114)(

VRS
el,lr

)
Γpq

=
∑
Γ′ab

WRS,lr
Γpq,Γ′abρ

S
Γ′ab. (115)

The
(
V RS

el,lr

)
Γpq

term, with a dependence R−l1−l2−1, is the long–range one and decreases very

slowly with R. However, the
(
V RS

el,sr

)
Γpq

term is of a short–range character due to the presence

of the µn function in their expressions.
(
V RS

el,lr

)
Γpq

will be combined in the Subsection VII D

with the corresponding long–range term of the nuclear matrix element yielding an unique

multipolar interaction term.

C. Local potential

The local potential V̂ S
loc(~r

R), defined by Eq. 87, is the potencial created by ion S on the

nucleus of ion R. Remembering that the Coulomb potential, ĴS(~rR), is given by (see Eq. 95)

JS(~rR) =
∑
Γ′ab

ρSΓ′ab

1

nΓ′

∑
µ′

〈
λS,Γ

′µ′

a

∣∣∣ (|~rR − ~r|−1
) ∣∣∣λS,Γ′µ′

b

〉
, (116)

22



and comparing this equation with the nuclear attraction interaction (Eq. 89), it is clear that

ĴS(~rR) can be also put in the form

JS(~rR) = − 1

ZR

∑
Γ′ab

ρSΓ′ab

(
V SR

nuc

)
Γ′ab

. (117)

Adding the nuclear potential created by ion S, we have

V S
loc(~r

R) = US(~rR) + JS(~rR) = − ZS

|~rS − ~rR|
− 1

ZR

∑
Γ′ab

ρSΓ′ab

(
V SR

nuc

)
Γ′ab

, (118)

that can be put in the form

V S
loc(~r

R) = V S
loc,lr(~r

R) + V S
loc,sr(~r

R), (119)

where V S
loc,sr(~r

R) is the short range term, given by

V S
loc,sr(~r

R) = − 1

ZR

∑
Γ′ab

ρSΓ′ab

(
V SR

nuc,sr

)
Γ′ab

=
∑
Γ′ab

ρSΓ′abN
S
abR

nSab

la+lb∑
l=|la−lb|

[
µnS

ab
−l−1(ζSabR)− µnS

ab
+l(ζ

S
abR)

]

×4π(−1)l

2l + 1

{ ∑
mamb

US,Γ′ab
mamb

T llamalbmb(R̂)

}
. (120)

The coefficient (−1)l appears because the vector involved in the integrals V SR
nuc is ~rS − ~rR =

−
(
~rR − ~rS

)
= −~R so that T llamalbmb(−R̂) = (−1)lT llamalbmb(R̂). V S

loc,sr(~r
R) only contains

interactions between the electrons of ion S and the nucleus of ion R. On the other hand,

the long–range term, V S
loc,lr(~r

R), containing the rest of the interactions between the electrons

of ion S and the nucleus of ion R and the internuclear repulsion, is given by

V S
loc,lr(~r

R) = −Z
S

R
+
∑
Γ′ab

ρSΓ′abN
S
ab

la+lb∑
l=|la−lb|

(nSab + l)!

ζ
nS
ab

+l+1

ab

R−l−1

×4π(−1)l

2l + 1

{ ∑
mamb

US,Γ′ab
mamb

T llamalbmb(R̂)

}
. (121)

D. Multipolar interactions

The EIE between two charge distributions ρR(~r) and ρS(~r) is given by:

ERS
e =

∫ ρR(~r1)ρS(~r2)

r12

d~r1d~r2. (122)
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Defining the spherical multipolar moment, Qlm, as

Qlm =

√
4π

2l + 1

∫
ρ(~r)rlSlm(r̂)d~r, (123)

and assuming that ρR(~r) and ρS(~r) are non–overlapping, ERS
e can be expressed in the form

ERS
e =

∞∑
l1=0

∞∑
l2=0

l1∑
m1=−l1

l2∑
m2=−l2

QR
l1m1

Cl1m1,l2m2(R̂)QS
l2m2

Rl1+l2+1
, (124)

where the coefficient Cl1m1,l2m2 , given by

Cl1m1,l2m2(R̂) =
4π(−1)l2√

(2l1 + 1)(2l2 + 1)

l1!l2!(2l1 + 2l2)!

(l1 + l2)!(2l1)!(2l2)!
T

(l1+l2)
l1m1l2m2

(R̂), (125)

only depends on the relative angular coordinates R̂ of the R and S centers. Eq. 124 is

known as the multipolar expansion of the electrostatic interaction, and is one of the most

widely used approximation in the treatment of intermolecular interactions. It involves the

charge distributions ρR(~r) and ρS(~r) as basic magnitudes. These ionic electron densities are

determined, however, by the potential acting on the electrons. The problem leads to the well

known self–consistent Hartree–Fock method, yielding electron densities that are consistent

with the interactions they generate. In our scheme, the final result of the SCF HFR method

are the cΓ
ip coefficients (see Eq. 85) or, in other words, the density matrix elements ρΓpq

(Eq. 96). In terms of ρΓpq, the expresssion of Qlm can be derived as follows. First, ρR(~r) of

the R closed–shell ion can be written as

ρR(~r) = 2
∑
Γµ

∑
i

|φΓµ
i (~r)|2 = 2

∑
Γµ

∑
i

∑
pq

cΓ
ipc

Γ
iqλ

R,Γµ
p (~r)λR,Γµq (~r), (126)

where Eq. 85 is used. Taking into account Eqs. 1,81, 91, and 96, the above equation results

ρR(~r) =
∑
Γpq

ρRΓpqχp(r)χq(r)
∑
mpmq

UR,Γpq
mpmqSlpmp(r̂)Slqmq(r̂). (127)

Introducing this electron density in the expression of Qlm (Eq. 123), it is obvious that

QR
lm =

√
4π

2l + 1

∑
Γpq

ρRΓpq 〈χp| rl+2 |χq〉

×
∑
mpmq

UR,Γpq
mpmq

〈
Slpmp

∣∣∣Slm ∣∣∣Slqmq〉 . (128)

Solving the radial integrals and remembering the definition of the Gaunt coefficients between

real spherical harmonics, dlmlpmplqmq (see Eq. 5),

QR
lm =

∑
Γpq

ρRΓpq
(
QR
lm

)
Γpq

, (129)
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where we have defined
(
QR
lm

)
Γpq

as

(
QR
lm

)
Γpq

=

√
4π

2l + 1
NR
pq

(nRpq + l)!

(ζRpq)
nRpq+l+1

∑
mpmq

UR,Γpq
mpmqd

lm
lpmplqmq . (130)

It is important to notice that, due to the selection rules of the Gaunt coefficient, the density

charge Γpq only has contributions to the multipole moments with |lp − lq| ≤ l ≤ lp + lq and

l + lp + lq =even. Redefining the l = 0, m = 0 multipole moments to include the nuclear

charge

QR
lm = −ZRδl,0 +

∑
Γpq

ρRΓpq
(
QR
lm

)
Γpq

, (131)

the multipolar potential

(
V RS

mp

)
Γpq

=
(
V RS

nuc,lr

)
Γpq

+
(
V RS

el,lr

)
Γpq

(132)

can be written as

(
V RS
mp

)
Γpq

=
∑
l1m1

∑
l2m2

(
QR
l1m1

)
Γpq

Cl1m1,l2m2(R̂)QS
l2m2

Rl1+l2+1
. (133)

On the other hand, V S
loc,lr(~r

R) (Eq. 121) can be put in terms of the QS
l2m2

’s as

V S
loc,lr(~r

R) = −Z
S

R
+
∑
l2m2

C00,l2m2(R̂)

∑
Γ′ab ρ

S
Γ′ab

(
QS
l2m2

)
Γ′ab

Rl2+1

=
∑
l2m2

C00,l2m2(R̂)
QS
l2m2

Rl2+1
. (134)

The EIE V RS (see Eq. 86) can then finally written as

V RS = ERS
mp + ERS

sr (135)

where ERS
mp is the multipolar interaction

ERS
mp =

∑
Γpq

ρRΓpq
(
V RS

mp

)
Γpq
− ZRV S

loc,lr(~r
R) (136)

or

ERS
mp =

∑
l1m1

∑
l2m2

QR
l1m1

Cl1m1,l2m2(R̂)QS
l2m2

Rl1+l2+1
, (137)

and ERS
sr is the short range interaction energy due to the overlapping of the electron densities

ERS
sr =

∑
Γpq

ρRΓpq

[(
V RS

nuc,sr

)
Γpq

+
(
V RS

el,sr

)
Γpq

]
− ZRV S

loc,sr(~r
R). (138)

25



TABLE I: Test positions ~rS1 , ~rS2 and ~rS3 of center S in the Cartesian (x, y, z) and polar (r, θ, φ)

systems. Atomic units are used for distances, radians for angles.

Vector (x, y, z) (r, θ, φ)

~rS1 (0.05477,-0.07071,-0.04472) (0.10000,2.03443,-0.91175)

~rS2 (-2.23607,1.00000,-1.73205) (3.00000,2.18628,-0.42053)

~rS3 (4.12311,5.65685,7.14143) (10.00000,0.77540,0.94096)

As the direct sum of the multipolar interactions extended to the infinite set of ionic pairs

in a crystal is only conditionally convergent, special methods, such as the Ewald technique

[30], must be used on its computation. In turn, the short range interaction energies can

be easily computed as a direct sum extended to all the pairs of ions in the crystal up to a

predetermined convergence criterion.

VIII. NUMERICAL TESTS

We have generated simple Fortran codes that calculate the two–center integrals considered

in this paper by means of the algorithms described in previous Sections. Double precision

(8 bytes, approximately 15 significant figures) has been used as our main choice for real

variables; however, a quadruple precision (16 bytes, about 34 significant figures) version has

been prepared, to test truncation error issues.

For our test integrals, we have selected the STOs 1s ≡ χ1sS00, 2pz ≡ χ2pS10, 4dz2 ≡ χ4dS20

and 3dxy ≡ χ3dS2−2 with orbital exponents 56.114521, 0.408310, 10.940400 and 5.538740,

respectively. In comparing our approach with other methods, our formulas are not restricted

to orbitals whose centers are aligned along the z–axis (Mulliken orientation). Therefore, there

is no need for subsequent multiplications with rotation matrices even for general orientations.

Hence, we have selected different orientations of the orbital centers with the center R fixed

in the origin, while the position of the center S varies as indicated in Table I.

One of the worries often found in developing algorithms to compute ETOMI is the analysis

of the results. The common practice is to compare the results provided by the trial algorithm

with the values found in the literature for some particular integrals. However, when multi-
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TABLE II: Coulomb integrals obtained using the algorithms described in Section III for the different

STOs and center S positions.

Integral ~rS1 ~rS2 ~rS3

CRS1s1s,1s1s 9.9919736083225 0.3333332176408 0.0999999948025

CRS1s1s,2pz2pz 0.2041368026457 0.1909127293863 0.1026745438956

CRS1s1s,4dz24dz2
2.7129383373309 0.3333095179182 0.1000141685427

CRS2pz2pz ,2pz2pz 0.1597987934947 0.1472557745713 0.0953473807448

CRS2pz2pz ,4dz24dz2
0.2045681364834 0.1905762508091 0.1026485981662

CRS4dz24dz2 ,4dz24dz2
2.3071008129045 0.3332606626520 0.1000282727447

CRS1s1s,1s4dz2
-0.0023871573922 -0.0000000000007 0.0000000065601

CRS1s2pz ,4dz23dxy
-0.0000002687124 -0.0000000024077 -0.0000000000226

center integrals are considered, the number of available comparison values is rather small

and, in many cases, the accuracy of these values is not sufficient for an adequate evaluation

of the trial algorithm performance. Therefore, it seems desirable for testing purposes to have

a procedure that enables the computation of any arbitrary integral with sufficient accuracy.

The STNGINT program by Fernández Rico et al [12], that calculates the ETOMI using

STOs, provides a quite suitable reference. In this code, each STO is expanded in terms of

a very large number of GTOs ('30), and the integrals attain an accuracy of at least ten

decimal places with the penalty of a quite expensive fitting procedure. In what follows, we

will use the STNGINT program to compare the accuracy of the Coulomb integrals obtained

by our algorithms. Unfortunately, we have not found alternative algorithms that could allow

us to compare the accuracy of overlap and nuclear attraction integrals.

Table II presents the results for the Coulomb integrals obtained by our algorithms. In

turn, Table III presents the absolute difference between the Coulomb integrals obtained by

our algorithms and by those implemented in the STNGINT code. This absolute difference

is always less than 1× 10−7. It can be seen as the greatest loss of accuracy (and precision)

generally occurs for small distance between the STO centers (0.1 bohr). Regarding this,

one should note that our two–center integral Fortran codes do not take into account the

considerations for the limit R→ 0 presented in Section V. For such small distances, usually
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TABLE III: Absolute difference between the Coulomb integral obtained through the algorithms

described in Section III and the algorithms implemented in STNGINT program. Numbers in paren-

theses correspond to absolute differences between values obtained using quadruple–precision and

double–precision real variables, when these values do not match.

Integral ~rS1 ~rS2 ~rS3

CRS1s1s,1s1s < 1× 10−13 < 1× 10−13 < 1× 10−13

CRS1s1s,2pz2pz 1.8× 10−12 2.8× 10−12 7.4× 10−12(
2.7× 10−12

)
CRS1s1s,4dz24dz2

1.1× 10−12 < 1× 10−13 < 1× 10−13(
0.8× 10−12

)
CRS2pz2pz ,2pz2pz 1.70194× 10−8 1.9× 10−12 1.8× 10−12(

2.0× 10−12
)

CRS2pz2pz ,4dz24dz2
3.36147× 10−8 5.28× 10−9 8.68490× 10−8(

0.1× 10−12
) (

0.1× 10−12
) (

2.4× 10−12
)

CRS4dz24dz2 ,4dz24dz2
8.0035× 10−9 < 1× 10−13 0.1× 10−12(

0.5× 10−12
)

CRS1s1s,1s4dz2
2.9× 10−12 0 0

CRS1s2pz ,4dz23dxy
2.9× 10−12 0.1× 10−12 0

corresponding to highly unstable configurations, we can assume these errors as harmless. On

the other hand, an important advantage of the implemented algorithms, without the R→ 0

considerations, is their efficiency. In fact, when calculating a high number of integrals and

computing their CPU times, the results for our algorithms can be about 1000 times faster

than STNGINT ones.

Tables IV and V present the results obtained for the overlap and nuclear attraction

integrals calculations. The sign of the overlap integrals depends on the relative signs of the

two basis functions and on their relative orientation and separation in space. As already

mentioned, we do not have alternative implemented algorithms to compare them with these

integrals. Nevertheless, using our algorithms in a test code gives correct results for systems

with no symmetry splitting of the spherical averages (for instance NaCl, with no splitting
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TABLE IV: Overlap integrals obtained through the algorithms described in Section III for the

different STOs and center S positions. The results obtained with quadruple–precision real variables

coincide in all presented figures with these double–precision results, except for the integral marked

with †, whose quadruple–precision result is −0.0000134013088.

Integral ~rS1 ~rS2 ~rS3

SRS1s1s 0.0625470618575 < 1× 10−13 < 1× 10−13

SRS1s2pz 0.0000862323629 0.0010314017092 -0.0002440452531

SRS1s4dz2
-0.0068800772878 < 1× 10−13 < 1× 10−13

SRS2pz2pz 0.9997666495955 0.7858718212100 -0.0304085882522

SRS2pz4dz2
0.0001818443606 0.0005568015453 −0.0000134013091†

SRS4dz24dz2
0.9033740735665 -0.0000000302005 < 1× 10−13

of the Na+ and Cl− p orbitals, is computed with results coincident with those from aiPI

up to the convergence criterion of the SCF procedure). The nuclear attraction integrals

were calculated using a nuclear charge equal to +1, so that the integrals depend exclusively

on the STOs. The integrals between identical STOs have a simple physical interpretation,

since they are the interactions between an electron, described by the orbital, and the nuclear

charge. Therefore, this interaction should always be attractive (negative sign). Again, one

should see a loss of precision for small distances between the centers, as computed comparing

our double– and quadruple–precision implementations. However, there are two fundamental

differences with the Coulomb integrals: (a) there are fewer situations where precision is lost

when one uses double–precision real variables, and (b) the loss of precision is usually smaller.

IX. CONCLUSIONS

The Silverstone and Moats’s expansion of a function about a displaced center [25] and

the bipolar expansion of Kay, Todd, and Silverstone for r−1
12 [26] have been used to develop

extremely compact and numerically stable formulas for the two–center overlap, nuclear at-

traction and Coulomb integrals between Slater type orbitals. Since there is no restriction

in the angular numbers of the STO’s, the derived expressions are valid for atoms with an
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TABLE V: Nuclear attraction integrals obtained through the algorithms described in Section III

for the different STOs and center S positions. The results obtained with quadruple–precision

real variables coincide in all presented figures with these double–precision results, except for

the integrals marked with † and ‡, whose quadruple–precision results are −0.2041368174305 and

−2.7131314621086, respectively.

Integral ~rS1 ~rS2 ~rS3

ZRS1s1s -9.9993484831756 -0.3333332176408 -0.0999999947803

ZRS1s2pz 0.0000934616199 0.0000001593362 -0.0000000177380

ZRS1s4dz2
0.0027543920296 0.0000000000007 -0.0000000065601

ZRS2pz2pz −0.2041368174296† -0.1909145956536 -0.1026746483376

ZRS2pz4dz2
0.0018062329331 0.0003879624795 -0.0000443348506

ZRS4dz24dz2
−2.7131314621083‡ -0.3333095179182 -0.1000141685427

arbitrary number of symmetries. In developing the final formula for the basic one–center

radial integral χIII, we avoid deliberately the use of the parameter β = 1
2

(ζ1 − ζ2). Then,

all the integrals are absolutely stable for nearly equal orbital exponents and no asymptotic

formulas are required. Moreover, the singularities produced for very small interatomic dis-

tances can be easily bypassed in the overlap and nuclear attraction integrals by introducing

all the powers of R inside the innermost loop of the expressions. Although this trick does

not work for the Coulomb integrals, we want to stress here that a value of R so small as

to produce instabilities in this integral cannot take place in realistic molecular and solid

state calculations. On the other hand, all integrals are stable with respect to the R → ∞;

in addition, it has been shown that only Coulomb and nuclear attraction integrals have a

long–range term that decays as R−(l1+l2+1), while most of the terms in those integrals as

well as all of the terms in the overlap integrals decay exponentially with distance. The

separation of these long–range terms is crucial for infinite periodic systems, as they have

to be summed up by special algorithms, and they lead to multipolar interactions. Another

relevant property of the algorithm given here is that the two nuclei involved in the integrals

are not restricted to be aligned along the z axis (Mulliken orientation). In the same way, as

the only dependence of the integrals on angular variables is trough the T l3l1m1l2m2
coefficient,
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their computation can be made for as many orientations as desired with the only extra cost

of recomputing T l3l1m1l2m2
each time. This fact makes the algorithm very attractive in solid

state calculations, where each atom is surrounded by shells of equivalent atoms at the same

R distance but with different orientations.

From formulas deduced for two–center integrals between STO, we demonstrate as the EIE

between non–spherical closed–shell ions can be divided into short–range interaction energy

and multipolar interaction, where this multipolar interaction is equivalent to multipolar

expansion of the electrostatic interaction.
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